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Abstract

Robotic agents can greatly be benefited from the integration of perceptual learning in

order to monitor and adapt to changing environments. To be effective in complex

unstructured environments, robots have to perceive the environment and adapt accord-

ingly. In this paper it is discussed a biology inspired approach based on the adaptive res-

onance theory (ART) and implemented on an KUKA KR15 industrial robot during

real-world operations (e.g. assembly operations). The approach intends to embed natu-

rally the skill learning capability during manufacturing operations (i.e., within a flexible

manufacturing system).

The integration of machine vision and force sensing has been useful to demonstrate

the usefulness of the cognitive architecture to acquire knowledge and to effectively use it
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to improve its behaviour. Practical results are presented, showing that the robot is able

to recognise a given component and to carry out the assembly. Adaptability is validated

by using different component geometry during assemblies and also through skill learn-

ing which is shown by the robot�s dexterity.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Industrial and personal robots will need more intelligence in the future. Cur-
rent industrial robots rely heavily on the manufacturers programming language

and are mostly used in well structured environments. Today�s robot developers
have not yet agreed in common robot languages and compilers for the devel-

opment of high level programming, which is necessary to provide self-adapting

behaviour to current robots. Robots within the industry must be carefully pro-

grammed and calibrated by experts before being used and later on, whenever

the task or the environment changes. In recent years a great deal of effort have

been focused toward making powerful artificial systems to facilitate this inter-
face between human and computer, man to machine has become a topic of

major research interest, which eventually facilitate the development and stan-

dardisation of common languages and/or robot interfaces.

The success of assembly operations using industrial robots is currently based

on the accuracy of the robot itself and the precise knowledge of the environ-

ment, i.e., information about the geometry of the assembly parts and their

localisation in the workspace. Techniques are sought to provide self-adaptation

to robots. Robot manipulators operate in real world situations with a high de-
gree of uncertainty and require sensing systems to compensate from potential

errors during operations. Uncertainties come from a wide variety of sources

such as robot positioning errors, gear backlash, arm deflection, ageing of mech-

anisms and disturbances. Controlling all the above aspects would certainly be a

very difficult task; therefore a simpler approach is preferred.

The main goal of the research presented in this paper, is to better under-

stand biologically inspired models to recreate and embed learning and intelli-

gence into self-adaptive industrial robots. The framework of the research is
situated under the connectionist-based approach for object recognition and

compliant motion learning during assembly operations toward the design of

robotic agents for assembly.

The remainder of this paper is structured as follows. Section 2 reviews re-

lated work and states our contribution to the field of self-adaptive industrial

robots for assembly. In Section 3 issues regarding knowledge acquisition and
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learning using the adaptive resonance theory (ART) model which inspired our

work are described. In Section 4, the robotic agent that includes the cognitive

architecture for object recognition and for part assembly is presented followed

by the methodology in Section 5, which includes the hardware description as

well as the methodology for object recognition and part assembly. Results from

several insertions are given in Section 6 and some discussions about the inser-
tions are provided in Section 7. Finally, conclusions and further work is pre-

sented in Section 8.
2. Related work

A few researchers have applied neural networks to assembly operations with

manipulators and force feedback. Gullapalli [1] used backpropagation (BP)
and reinforcement learning (RL) to control a Zebra robot. Its neural controller

was based on the location error reduction beginning from a know location.

Cervera [2] employed self-organizing map (SOM) and RL to control a Zebra

robot, but the location of the destination piece was unknown. Howarth [3] uti-

lised BP and RL to control a SCARA robot, without knowing the location of

assembly. Howarth also propounded the employment of tasks level program-

ming, using a BP-based neural controller. It was not implemented within a

manipulator, but the simulation showed acceptable results [4]. Lopez-Juarez
[5] implemented Fuzzy ARTMAP to control a PUMA robot, also with an un-

known location. Jörg [6] presents the employment of vision systems and force

feedback in the assembly of moving components.

Robotic assembly operations make extensive use of dedicated fixtures to

hold and align parts before they are assembled. Most of the time fixtures are

part specific and therefore they must be modified or replaced when product de-

sign changes. A new concept was introduced by Hoska in 1988 called ‘‘robotic

fixtureless assembly’’ (RFA), which involves new technical challenges, but al-
lows very potential solutions. Ro et al. [7] presented an approach for finding

optimal kinematics postures for two robots performing RFA, their algorithm

was demonstrated for two 2D robots using computer simulations. Ngyuen

and Mills [8] and his research group have studied control issues involved in

the RFA of flexible parts where they developed a dynamic model of the two

robots and proposed a control algorithm, which does not require measure-

ments of the part deflections. Plut and Bone [9,10] presented a grasp planning

strategy for RFA which produces grasps which immobilise objects kinemati-
cally requiring minimal friction or clamping forces. The goal of RFA is to re-

place this fixtures with sensor-guided robots which can work within RFA

workcells as is showed by Bone and Capson [11]. The development of such vi-

sion-guided robots equipped with programmable grippers might permit hold-

ing a wide range of part shapes without tool changing. This job can be
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achieved by using 2D computer vision in different manner so that 3D invariant

object recognition can be achieved for aligning parts in assembly tasks. A novel

method introduced by Peña [12] uses collections of 2D images to obtain a fast

feature data—‘‘current frame descriptor vector’’—of an object by using image

projections. This method produces ‘‘3D’’ POSE information for different pre-

defined assembly parts. Iida et al. at DENSO are currently studying low-cost
solutions in station-less assembly systems in which parts are assembled in mov-

ing conveyors without precise component�s positioning [13].

2.1. Original contribution

The objective of the research presented in this paper is to create self-adapt-

ing robots able to perform mechanical assembly with a minimum of instruc-

tions and information.
The robot has two sensory inputs, a vision system and a wrist force sensing

capability. The followed approach deals with the creation of a primitive knowl-

edge base (PKB) that includes a 2D representation of the object to be grasped

for assembly and an initial contact force–action mapping that bias initial ro-

bot�s reactions to constrained forces. No information is given about part local-

isation of the manipulated component.

The robot is able to recognise the part to be assembled as well as its POSE

(orientation and location). The rough location of the fixed part—female com-
ponent—it is provided by the Vision System. After determining which part is to

be grasped, then this information is sent to the robot controller.

The robot takes the part and roughly puts it onto the fixed component in

readiness for assembly and the proper operation starts. The robot increases

its knowledge on-line based on the success of the predicted motion. The robot

actually increases and enhances its knowledge as the operation progresses. The

time that the robot takes to complete a similar operation is reduced and also

mistakes made earlier do not recur, which demonstrates the new expertise of
the robot.

The design of the robotic agent and the cognitive architecture (CA) are

founded on the strength of ART networks to learn incrementally. New informa-

tion is acquired as the operation develops without affecting the knowledge that

was previously learnt. The Fuzzy ARTMAP algorithm is used and the CA train-

ing made on-line. The number of contact force patterns that the CA can accom-

modate in its knowledge is limited only to memory storage. The switching

mechanism of the CA is regulated by the development of the operation. New
knowledge information is only accepted in the Knowledge Base when it has

strongly contributed towards the success of the assembly. The resulting en-

hanced knowledge base (EKB) at the end of the assembly can be used for similar

operations. Results in aKUKAKR15 industrial robot demonstrates that the ro-

bot�s skill improves effectively and insertion times and errors diminish over time.
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3. Knowledge acquisition, learning, and ART models

The first situation to address for the Robot agent is knowledge acquisition.

Knowledge can either be built by hand or empirically as suggested by Towell

and Shavlik [14]. Empirical knowledge can be thought of as giving examples

on how to react to certain stimuli without any explanation. On the other hand,
hand-built knowledge is acquired by only giving explanations but without

examples. In robotic systems the approach would be to give the robot plenty

of examples in the form of training sets. That is, building its knowledge empir-

ically. The second approach would be to hardcode a rule-based system (hand-

built knowledge). It is determined that a suitable strategy should include a

combination of both methods. 1

Learning in natural cognitive systems, including our own, follows a sequen-

tial process as it is demonstrated in our daily life. This learning is also stable
because the learning of new things does not disrupt our previous knowledge.

These premises are the core for the development of connectionist models of

the human brain and are supported by Psychology, Biology and Computer Sci-

ences. Psychological studies suggest the sequential learning of events at differ-

ent stages or ‘‘storage levels’’ termed as sensory memory (SM), short term

memory (STM) and long term memory (LTM) [15].

The adaptive resonance theory (ART) is a well established associative brain

and competitive model introduced as a theory of the human cognitive process-
ing, developed by Grossberg [16] at Boston University. Grossberg resumed the

situations mentioned above in what he called the Stability–Plasticity Dilemma

suggesting that connectionist models should be able to adaptively switch be-

tween its plastic and stable modes. That is, a system should exhibit plasticity

to accommodate new information regarding unfamiliar events. But also, it

should remain in a stable condition if familiar or irrelevant information is

being presented. He identified the problem as due to basic properties of asso-

ciative learning and lateral inhibition. An analysis of this instability, together
with data of categorisation, conditioning, and attention led to the introduction

of the ART model that stabilises the memory of self-organising feature maps in

response to an arbitrary stream of input patterns [16].

The core principles of this theory and how short term memory (STM) and

long term memory (LTM) interact during network processes of activation,

associative learning and recall were published in the scientific literature back

in the 60�s [17]. The theory has evolved in a series of real-time architectures

for unsupervised learning, the ART-1 algorithm for binary input patterns
[18]. Supervised learning is also possible through ARTMAP [19] that uses
1 Furthermore, this idea is supported by psychologic evidence that suggests that theory and

examples interact closely during human learning [14].
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two ART-1 modules that can be trained to learn the correspondence between

input patterns and desired output classes. Different model variations have been

developed to date based on the original ART-1 algorithm, ART-2, ART-2a,

ART-3, Gaussian ART, EMAP, ViewNET, Fusion ARTMAP, LaminART

just to mention but a few.
4. Robotic agent

As mentioned before, robotic assembly imposes a highly demanding task for

standard industrial manipulators today. The robotic agent proposed in this pa-

per intends to facilitate this task by integrating vision and force sensing capa-

bility. The robotic agent should emerge from the interaction between the

Real-World and the robot manipulator itself. The agent should demonstrate
its ‘‘intelligence’’ by using new knowledge, refine and apply it autonomously

during skill learning showing the required skill during real world tasks.

The robot agent consists of two main blocks as it is shown in Fig. 1. These

blocks are based on the cognitive architecture (CA) which will be described in

Section 4.1. The assigned task to the agent is the assembly of mating pairs, this

is known as the ‘‘peg in hole’’ operation. 2 The followed approach resembles a

human agent carrying out the same task (i.e. determining the location and ori-

entation of the mating pairs first. One part is to be grasped—typically the male
component—and put above the fixed component in readiness for assembly.

The robotic operation is also divided in these two stages and each stage is

carried out by the corresponding cognitive architecture, the cognitive architec-

ture for object recognition (CA-Recognition) and the cognitive architecture for

assembly (CA-Assembly). Each cognitive architecture uses an a priori primitive

knowledge base (PKB) depending on the task nature. For instance, in the case

of the CA-Recognition the PKB contains Image feature vectors and compo-

nent type�s information. In the case of CA-Assembly, the PKB contains contact
force states and motion commands. The effective use of the PKB helps to start

learning the tasks (recognition and assembly). Details on the PKB�s formation

are given in Sections 5.2 and 5.3.

In order to improve the robot�s skills, it is necessary to acquire new knowl-

edge on-line so those given tasks are achieved accurately and faster. This is

achieved through feeding back relevant information that will ultimately en-

hance the knowledge and therefore improve the skill.

Finally, the CA-Recognition should predict the type of component (square,
circular and radiused square) and send this information in the form of task
2 The peg-in-hole operation is the most frequent task during assembly operations in industry

and represents 20% of unit production costs [20].



Chamfer Chamferless
No

Assembly

Cognitive Architecture

(Assembly Controller)

Real-World

Squared Circular
Radiused
Squared

Cognitive Architecture
(Object Recognition)

Image Vector/Task Descriptors

Robotic Assembly Agent

Fig. 1. Robotic agent.

I. Lopez-Juarez et al. / Information Sciences 171 (2005) 377–402 383
descriptor to the CA-Assembly for picking up the component. The CA-Recog-

nition produces the Image vector descriptor and task descriptor. The former is

sent back for knowledge refinement and the latter is send to the CA-Assembly

for motor control and to drive the manipulator to pick up the part. Also the

task descriptor includes physical features of the component so that the CA-

Assembly is able to select one of the available knowledge bases (chamfer,

chamferless, no assembly). During assembly operations, real-world signals
(force sensing) are sent back to the CA-Assembly in order to enhance the robot

dexterity.

4.1. Cognitive architecture

The core of the robotic agent is the cognitive architecture (CA) which is

based on ART. It is intended to design a generic architecture either for visual
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task (object recognition) as well as for motor control task (assembly opera-

tion). The CA is basically the development of ART as a knowledge base arti-

ficial neural network (KBANN). In KBANNs, the knowledge is inserted into

the network and subsequently refined by ANN training. The idea here is to

form a primitive knowledge base (PKB) by the cognitive architecture itself

under real-world situations providing the robot with the capability of recogn-
ising cues or primitive descriptors during early stages of learning, so that initial

conditions can be started. During knowledge refinement, and by giving more

examples, this knowledge is expected to be enhanced and improved.

An overview of the designed architecture is shown in Fig. 2. The learning

and recognition module—connectionist model—is the heart of the cognitive

architecture. The architecture also includes three additional modules. The

primitive knowledge base, the world effector and the knowledge refinement

module.
The primitive knowledge base stores initial information about the environ-

ment. This information is used only during the first stage of training. In this

stage the switch SW1 will be open and the switch SW2 closed since the initial

training is made only using the PKB. After passing this initial state, the

ANN will predict the next action based on the current input from the sensor

(SW1 closed and SW2 open). Later if appropriate, the PKB will be enhanced

by patterns that favoured the knowledge refinement criteria. This module keeps

track of the patterns and verifies whether the change was good enough to allow
the ANN to be re-trained. If this is the case, the switch SW2 is closed and the
Knowledge
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Fig. 2. Cognitive architecture (CA).
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corresponding pattern-action provided to the ANN for on-line retraining. Fu-

ture predictions will be based on this newly trained network. The World Effec-

tor module is basically in charge of modifying the real-world process. External

components to the cognitive architecture are represented by the Real World

block.
5. Methodology

5.1. Architecture

The robotic architecture is formed basically by a 6 DOF KUKA KR15

industrial robot, KRC2 robot controller, KUKA control panel (KCP), PC

master computer, PC vision computer—not shown—JR3 F/T sensor attached
to the robot�s wrist, a ceiling mounted TM6710 Pulnix CCD Camera and a

Conveyor Belt as it is illustrated in Fig. 3. Two working zones are defined.

The Feeding Zone, which is where the manipulated components lie and the

Assembly Zone which consists of a Master Block containing the fixed, female

component.
Fig. 3. Robotic system.
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A schematic diagram about the hardware connections is illustrated in Fig. 4.

The KUKA KR15 has a repeatability of ±0.1 mm. The KRC2 controller

houses the components that control and power the robot arm. The Master

Computer hosts the DSP-based JR3 F/T sensor card that communicates and

power the sensor. The Master Computer also communicates with the robot

controller via RS232C standard. Data sent from the Master Computer to
the KRC2 controller is transmitted in the format shown below:

hCODEi NUL hDIST i NUL hVELi
where

hCODEi A byte containing the corresponding Command Code (16 motion

direction commands and 9 control commands: do nothing, go to home, world
coordinates, tool coordinates, joint coordinates, base coordinates, end commu-

nication, open gripper, close gripper).

NUL A byte containing the null ASCII character.

hDISTi A byte containing a distance value given in tenths of mm.

hVELi A byte containing a velocity value given in mm/s.
Fig. 4. Block diagram of the system.
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The information packet is sent to the KRC2 controller using Xon/Xoff flow

control. A monitor program in KPL—KUKA�s language—is running contin-

uously detecting any requested arm motion from the Master Computer.

Depending on the value given in the CODE byte, the robot arm will move

in world coordinates during gross motion (e.g. from the Feeding Zone to the

Assembly Zone) or in tool coordinates at the lower level, moving the arm incre-
mentally while in fine motion during assembly.

In practice, the F/T sampling rate by the DSP board was set to 8 kHz

(0.125 ms) and the values were read from the sensor every 100 ms by the main

program. However arm positions during constraint motion were updated only

after a delay of 600 ms. This time was fixed and included the time for reading

the sensor, testing/training the ANN on-line and repositioning the arm.

The vision system is composed by a PC Vision Computer in which a DSP-

based Coreco Imaging Frame Grabber resides. This Vision Computer is in
charge of positioning the ceiling-mounted camera in the X�Y plane using

the parallel port. The algorithms for POSE determination (orientation and

location) reside in this computer. POSE information about the components

on the conveyor belt in the Feeding Zone is provided serially by the Vision

Computer to the Master Computer, which in turn issues position commands

to the KRC2 controller for component grasping.

Contact Forces are measured at the JR3 F/T sensor which is attached to the

robot�s flange edge using an adapter plate and the Torque values are computed
by the JR3 DSP card. The origin for the F/T coordinate frame is located in the

centre of the sensor unit; however, in our experiments the origin was translated

and rotated so that it was located at the peg�s tip.
Programming for the CA-Recognition and CA-Assembly was developed

using Visual C++ 6.0 and the monitoring program for the commanded mo-

tions to the KRC2 was developed in KPL language. Fig. 5 shows an example

of the main program and two windows corresponding to the robot motion dia-

log. This window also includes the 3 horizontal bars that continuously monitor
forces in the X, Y and Z direction. The other window dialog corresponds to

neural network training parameters.

5.2. Invariant object recognition

The proposed methodology for invariant object recognition is based on the

use of canonic shapes within the PKB. Once having embedded this knowledge

the idea is to improve and refine it on-line using the CA-Recognition, which
compares favourably with Gestalt principles such as grouping, proximity, sim-

ilarity and simplicity [15].

To illustrate the methodology, it will be useful to consider the assembly

components used during experiments. These working pieces are shown in

Fig. 6(a). From this picture it can readily be recognised two canonic shapes:



Fig. 5. Software interface.

Fig. 6. (a) Working pieces and (b) canonic shapes.
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circular and square. There is a third one, which is a combination of both and

that we have called the ‘‘radiused square’’ shape since it is basically a square

shape with one of its corners rounded, this can be well observed in Fig. 6(b).

These canonic shapes serve as ‘‘clues’’ inserted initially in the PKB which

will initialise the grouping process (clustering). The knowledge acquisition is

acquired by presenting multiple instances of the object such as those shown

in Fig. 7. Fig. 7(a) shows an example of the circular shape and some of the pos-

sible views are illustrated in Fig. 7(b). The following step is to code the object�s
information so that its description be invariant to location, scaling and orien-

tation. The algorithm is explained in the following section.
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Fig. 7. Object examples.
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5.2.1. Descriptor vector generation

The descriptor vector referred to as the CFD&POSE vector is formed by:

½CFD&POSE� ¼

D1

D2

..

.

Dn

X c

Y c

/

Z

ID

2
666666666666666664

3
777777777777777775

where Dn is the distance from the centroid to the object�s boundary, Xc, Yc are

centroid coordinates, / is the component�s orientation in world coordinates, 3

Z is the height in the Z axis in world coordinates. 4 ID corresponds to a cod-

ification number related to the component�s type geometry.
To determine the distance from the centroid to the boundary of the object,

let us first determine the boundary object function (BOF), which contains the

contour and centroid of every canonical shape within the image.

The process starts by transforming in binary form the region of interest,

then a Weight Transformation Matrix HWf is generated to have a relation

set of

Weight factor ðWfÞ ðconsidering pixel valueÞ
! ½coordinate numerical bin� ð1Þ

where

Wfmin 6

X
10s within Kernelk�k 6 Wfmax ð2Þ
3 The origin of the world coordinate system is located at the robot�s base.
4 Z was considered constant during experiments.
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Wfmax provides the centroid of an object and each Wfmin provides a boundary

point of contour (see Fig. 8). For centroid calculations a summation of all
Wfmax is made for all X–Y�s as follows:

xc ¼
P

WfmaxðxÞ
@ðWfmaxðxÞÞ

yc ¼
P

WfmaxðyÞ
@ðWfmaxðyÞÞ

ð3Þ

and the set of boundary points distances to centroid generates ~X and ~Y vectors:

~X ðWfminÞ ¼ fx0; x1; x2; . . . ; xng
~Y ðWfminÞ ¼ fy0; y1; y2; . . . ; yng

ð4Þ

The size of the vector is up to the size of the angular grid used in

CFD&POSE vector, centroid and boundary points coordinates allow calcula-

tions to get form feature extraction. Distances to get the BOF are given by

Dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn � xcÞ2 þ ðyn � ycÞ

2

q
ð5Þ

The orientation (/), basically depends on the number of steps used in the
angular grid (e.g. four steps will reference the orientation to the North, West,

South or East).

5.3. Assembly

5.3.1. Robot training and the primitive knowledge base (PKB)

Once the object has been recognised, picked up and placed just above the

female component then the robotic agent will initiate the assembly. This task
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is in charge of the CA-Assembly, the formation of the PKB in this case consists

of showing the robot how to react to individual components of the F/T vector

before starting any operation. While the arm is in constraint motion, the F/T

pattern is acquired in the knowledge base and associated with the selected mo-

tion. The storage of the F/T vector and the Primitive Motion will form the

PKB that is required to start the assembly for the very first time. The procedure
is illustrated in Fig. 9.

Early work showed the usefulness of teaching the robot a PKB including 12

Primitive Motions corresponding to six F/T components and six Motion Com-

mands associated with this F/T signal [21]. Further work resulted in the inclu-

sion of four additional motions corresponding to four diagonal motions

(Dx+y+,Dx�y+,Dx�y�,Dx+y�) as illustrated in Fig. 9. A octagonal block is

used as robotic tool to establish the correspondence between orthogonal and

diagonal forces to motion directions.
Note that when the arm is starting an assembly and while in free-space the

Primitive Motion will be in �Z direction since this is the condition (minimum

constraint forces) to proceed downwards during this operation. The Primitive

Motion corresponding to the rotation in X and Y axis were assigned after

rotating the arm in free-space at an angle so that a single mx or my component

was produced. The Primitive Motion, Rz, was given to the CA-Assembly using

a square peg into a square hole producing a moment around the Z axis.

The PKB used during our experiments is shown in Fig. 10, The F/T data
from the sensor was scaled to the range [0,1], where the extreme values 0

and 1 corresponded to a force of �50 N and +50 N respectively. Negative val-

ues were assigned to the interval [0, 0.5) and positive values were assigned to the

interval (0.5,1]. It should be noted that the origin in the graph is set to 0.5,
Fig. 9. Training procedure.
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where positive and negative values are represented in the upper and lower

halves of the graph respectively. Every column corresponded to an input vector

to the neural network. The corresponding assigned output vector is shown at

the top of the graph for each pattern.

5.3.2. Knowledge enhancement

Following the CA-Assembly design, it is expected the robot�s behaviour to
improve after assembly operations. It is obvious that the robot have to acquire

further and useful knowledge to make him skillful. This requirement clearly

identifies some of the aspects to consider in order allowing new knowledge

to be learned and this can be resumed in two fundamental questions:

1. What is a good motion?

2. Which motions should or should not be learned?

Having an assembly system which is solely guided by contact force states,

the criterion to decide whether the motion was good enough to be learnt is

based on the measurement increment of the F/T vector before and after the

compliant motion as proposed by Ahn et al. [22]. They did not proposed a nu-

meric value, in our experiments we used a factor of 10 between the forces mea-

sured before and after the motions, hence:

F after < 0:1 � F before ð6Þ
Fafter and Fbefore are computed following the proposed heuristic equation by

Ahn et al.:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fx2 þ fy2 þ fz2 þ mx2 þ my2 þ mz2

q
ð7Þ
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Expression (6) means that if the total force after the incremental motion is

significantly reduced then that pattern-action will be considered good to be in-

cluded in the knowledge base. Experiments showed that if this threshold value

was set higher (i.e. P0.3 *Fbefore) the network became very sensitive and

showed overtraining behaviour.

Forces that are higher than the value given by 0.1 *Fbefore and lower than
the Flimit are still good values. However, the corresponding pattern-action pair

will only be used during network recall. This situation is illustrated in Fig. 11

that shows three possible situations: learning, recall and error recovery.

The third area is a situation where FPFlimit. In this situation the user is

alerted and asked to reposition the arm.

There will be ambiguous situations in which learning should not be permit-

ted. This applies to patterns in the insertion direction (usually Z direction).

Consider downward movements in the Z� direction. At the time the peg makes
contact with the female block, there may well be a motion prediction in the Z+

direction. This recovery action will certainly diminish the contact forces and

will satisfy the condition given by the expression (6) in order to learn the

force–action pair. However, this situation is redundant since it was given when

the PKB was formed and it is likely that it will corrupt the PKB. Similarly,

learning should not be allowed when the arm is in free-space. In this situation,

Fafter and Fbefore will be very similar and again learning another pattern in the

Z� direction will be redundant. Both situations were tested experimentally
revealing that an unstable situation may appear if further learning is allowed

in the insertion direction.

After the pattern-action has satisfied expression (6) and the prediction direc-

tion is not in the Z direction, the pattern is allowed to be included in the new

‘‘expertise’’ of the robot, the enhance knowledge base (EKB). Patterns that do

not satisfy expression (6) and whose values are lower than the Flimit will only be

used to recall previous knowledge. The knowledge refinement process will con-

tinue in the CA-Assembly until the end-condition is satisfied.
Learning Recall Error recovery

0 0.1F before Fbefore Flimit Constraint force

Fig. 11. Learning, recall and error recovery.
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6. Results

6.1. Recognition and grasping

Several tests were carried out to assess the performance of the robotic agent

using aluminium pegs. The diameter of the circular peg was 25 mm and the side
of the square peg was also 25 mm. The dimensions of the radiused-square were

a side 25 mm with one corner rounded to a radius of 12.5 mm. This was shown

in Fig. 6(a).

A first task managed by the robotic agent is to recognise the POSE (location

and orientation) of the peg in the Feeding Zone as illustrated in Fig. 3. The

centroid and orientation was determined as explained in Section 5.2. An image

processing picture of this task is shown in Fig. 12.

Clustering results by the CA-Recognition are given in Fig. 13.
Fig. 13 shows the image clues that were given to the Fuzzy ARTMAP algo-

rithm in fast learning mode and the testing prototypes. Processing times are

very short since the algorithm in fast PC platforms (Pentium-4 @ 2.66 GHz),

performed the learning of clues and recall of prototypes in less than 2 ms,

which clearly underline the real-time potential of the approach. Further details

can be consulted in [12]. Results have shown that using the CFD&POSE Vec-

tor as input to the CA-Recognition is a viable methodology to recognise the

three components under study. The methodology indicated that it was possible
to compact 3D data in 2D data obtaining fast learning and recall. At this stage,

there have been tested the clustering and learning process off-line.

In order to pick up the male component and facilitate the task, the peg�s
coordinate value in the Z axis was given explicitly. The robot then was moved

to the specified location and grasped the part. Next, the camera was positioned

in the Assembly Zone (see Fig. 3) and the centroid of the female component

determined. With the current calibration of the camera, a positional resolution

of ±3 mm was achieved. This positional uncertainty was chosen in order to test
Fig. 12. Centroid determination.
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Pentium IV@ 2.66 GHz
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Fig. 13. Component clustering.
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the robustness of the CA-Assembly, which had to compensate for this

misalignment.

6.2. Assembly

During operations, clearances between pegs and mating pairs were 0.1 mm.
The end-condition of the assembly was set to be 3/4 of the peg�s body inside the

hole. This represented 140 motion steps in the Z� assembly direction without

any offset. When a positional offset is given with respect to the insertion centre,

this misalignment will necessarily be corrected by alignment motions in other

directions different from the Z direction. A typical assembly operation it is

shown in Fig. 14.



Fig. 14. Typical assembly operation.
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The Fuzzy ARTMAP network parameters during experiments were set for

fast learning (learning rate = 1). The base vigilance qa had a low value since it

has to be incremented during internal operations. qmap and qb were set much

higher to make the network more selective creating as many clusters as

possible.

The vigilance parameters used for the experiments reported in this article are

as follows:

qa ¼ 0:2 ðbase vigilanceÞ

qmap ¼ 0:7

qb ¼ 0:9

Typical results on three different geometries are summarised in Table 1:

At the start of the operation positional offsets were given as indicated in the
second column. During the first insertion, learning was enabled (ON status),

the network learned 3 new patterns and this operation required 155 incremen-

tal motions and only 15 alignment motions. The learned patterns were Dx�y�

as indicated in the comments column. The processing time for the whole inser-

tion was 1.23 min. Subsequent assemblies were carried out and the number of

learned patterns decreased to none. The processing time showed only small

fluctuations for insertions using the same offset. Table 1 also shows the ‘‘exper-

tise’’ acquired by the robot during the operations. After six insertions there
were learnt nine additional patterns. This implied that these patterns were good

enough to be learned. This EKB reinforced the prediction capability of the net-

work since the new patterns were actually generated by the particular geometry

of the parts, i.e. circular. The type of learned patterns at every insertion is indi-

cated in the comments field. With a larger offset (insertions 10–14), the



Table 1

Insertion results

Insertion Offset (dx,dy,
dRz) (mm,mm, �)

Learning New

patterns

Alignment

motions

Total

motions

Processing

time (min)

Comments

Circular chamfered peg insertion

1 (1.2,0.8,0.0) ON 3 15 155 1.23 DX�Y�
2 ’’ ’’ 2 12 152 1.21 DX�Y�
3 ’’ ’’ 3 12 152 1.21 DX�Y�
4 ’’ ’’ 0 12 152 1.21

5 ’’ ’’ 0 12 152 1.18

6 ’’ ’’ 1 22 162 1.25 DX�Y�
7 ’’ ’’ 0 17 157 1.21

8 ’’ ’’ 0 17 157 1.21

9 ’’ ’’ 0 17 157 1.21

10 (2.5,2.5,0.0) ON 0 26 166 1.26

11 ’’ ’’ 0 25 165 1.25

12 ’’ ’’ 0 25 165 1.25

13 ’’ ’’ 0 25 165 1.25

14 ’’ ’’ 0 25 165 1.25

Square chamfered peg insertion

15 (2.5,2.5,0.0) ON 0 82 222 1.55

16 ’’ ’’ 0 73 213 1.51

17 ’’ ’’ 0 255 395 3.25

Radiused-square chamfered peg insertion

18 (�1.0,�1.0,0.0) ’’ 0 259 399 3.25

19 (�1.5,�1.0,0.0) ’’ 0 148 288 2.32 X+,Z+,DX+Y+,Y+,DX�Y�,DX�Y+
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CA-Assembly did not learned any additional pattern indicating that the net-

work had already acquired the necessary knowledge about the chamfer and

used this information effectively. As the starting point was further from the

end-condition, the time to complete the insertion was proportionally longer.

This is reflected in both, the number of alignment motions and the total num-

ber of motions.

6.2.1. Generalisation and expertise

Other tests were conducted to validate the generalisation feature of the CA-

Assembly, which can be observed during insertion 15–17 in Table 1. At this

point the circular female component was interchanged by a squared compo-

nent. It was noted that the number of alignment motions increased and it took

very long time to insert the peg—insertion 17—however the robot was still able

to insert the squared peg using the EKB that had learned during insertion of
the circular peg. Further insertions were made using the radiused-square peg

with different offset—insertion 18–19—and the robot also succeeded in com-

pleting the assembly.

An example of compliant motion it is shown in Fig. 15 where acting forces

and motion during insertion 14 are illustrated.

The upper and middle graph represents the force and moment traces respec-

tively, whereas the motion directions commanded by the CA-Assembly are

given in the lower graph. In the Motion Direction graph, the horizontal axis
corresponds with the Z� direction. Bars above the horizontal axis represents

linear and diagonal alignments and below the horizontal axis angular align-

ments. It is observed that after 14 insertions the robot arm only moved in

the Dx�y� and Z� direction, which makes sense since the offset had been given

in the X+ and Y+ direction. After passing the chamfer, the motions were only

in the Z� direction as it can be seen on the right side of the dotted line. Contact

forces were limited to 40;N in the Z axis, if higher forces appeared then the user

was required to reposition the robot arm. In practice, forces did not reach the
limit if the contact was made within the chamfer or 2.5 mm from the edge of

the hole in the chamferless assembly operation.
7. Discussions

7.1. Density of data and knowledge acquisition

The capability of generalisation and knowledge acquisition of the CA-

Assembly has been demonstrated. Patterns that reduce significantly the contact

forces during manipulations were acquired into the knowledge base and learnt.

A representative learning example was shown in Section 6 with the circular

chamfered insertion. In this example, the network was initially trained with
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the PKB containing the 16 possible patterns associated with the robot�s 6 DOF.

This information biased the initial learning by creating 16 categories to allocate

every possible motion direction. From these results, it was verified that subse-

quent patterns corresponding to contact states within the chamfer were effec-

tively allocated into these categories.

Prior reported work used only 12 motions within the PKB [21]. It was noted
that richer information in the PKB was needed; hence the robot should move

in other direction apart from the main orthogonal directions. Having this in

mind, diagonal motions were taught to the robot. In the given example during

the chamfered peg insertion, it could be observed that this information was rel-

evant in order to speed up the assembly (avoiding unnecessary alignment

movements as it was the case in our previous work [23,21]). By having 16 prim-

itive motions within the PKB instead of 12, the robot�s behaviour was not only
better but also its generalisation ability—assembling different part geometry—
improved. Results showed that no additional patterns were learned despite the

geometry change (see Table 1, insertions 15–17 and 18–19).

Fig. 16 shows the nature of learned patterns during the assembly of the three

pegs (see the new patterns column in Table 1). According to the PKB illus-

trated in Fig. 10, It is easy to observe that the robot learned only diagonal mo-

tions in the X� Y� direction.

As established earlier, the criteria to learn new patterns was the condition

given by the expression Fafter < 0.1 *Fbefore. As the learning progresses, a reduc-
tion in contact forces was observed through several insertions. Forces are smal-

ler as the robot is more skillful and from the expression above forces have also

to be smaller to be accepted into the EKB. Then the expression resulted to be

an effective criterion to automatically stop the learning.
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8. Conclusions and future work

Results from our experiments demonstrate that industrial manipulators can

learn manipulative skills on-line using contact force information. The informa-

tion from the environment was minimal. The knowledge was enhanced accord-

ing to the part geometry and provided the required adaptation by the robot to
learn a new assembly and improve its skills from experience.

Initial results employing the CA-Recognition have facilitated the assembly

task. The centroid and orientation values have been very important to grasp

the part. The Fuzzy ARTMAP network has been useful to classify and recog-

nise simple parts. The novel coding of the CFD&POSE vector to invariantly

represent an object and the very short convergence time makes this alternative

suitable to be tested under real-time conditions. Further work is needed here,

since only top views have been used. It is believed that depth information could
be determined by associating the component�s shadow and producing more

CFD&POSE vectors that ultimately would be fed into the CA-Recognition

for knowledge refinement similarly as it is made in the CA-Assembly.

Ongoing work is also looking at including complex arm motions. It is in-

tended to include within the PKB, information regarding the stiffness of the

arm, so that the arm is able to apply the required force according to the mag-

nitude of the constrained forces. Another area of current research is the auton-

omous generation of the PKB, relating the part�s geometry to the constraint
forces and motions.
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